If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=3w^2-81
We move all terms to the left:
0-(3w^2-81)=0
We add all the numbers together, and all the variables
-(3w^2-81)=0
We get rid of parentheses
-3w^2+81=0
a = -3; b = 0; c = +81;
Δ = b2-4ac
Δ = 02-4·(-3)·81
Δ = 972
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{972}=\sqrt{324*3}=\sqrt{324}*\sqrt{3}=18\sqrt{3}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{3}}{2*-3}=\frac{0-18\sqrt{3}}{-6} =-\frac{18\sqrt{3}}{-6} =-\frac{3\sqrt{3}}{-1} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{3}}{2*-3}=\frac{0+18\sqrt{3}}{-6} =\frac{18\sqrt{3}}{-6} =\frac{3\sqrt{3}}{-1} $
| x-5.59=4.8 | | 9*i=8*7=2+1=5=-5=6=7=0=1 | | 4y+16=-2(y-5) | | 9*i=8*7=2+1=5=-5 | | 0=y^2-10y+26 | | 4x(20+30)=(4x)+(4x)=+ | | 7=5=t=-9 | | 5x(3)=15 | | 2u^2+8=72 | | 0.98^x=0.5 | | 6*3+7y=18+7y | | 3m^2+5=80 | | 2x+7=3x-18 | | 10y+12=6y-28 | | 3x+10+2x=18 | | 5m+10=110 | | -8(6-b)/8=16(b+11)/6 | | X=(1/2)16-8y) | | X^2+Y^2+2x-44=0 | | 3x-18=x+7 | | 8x+36=5x+60= | | (X+11/3)=(2x+28x/9) | | 3x/18+7=x/2 | | 25=703*x/70 | | 5y+4=7^2 | | 9/15=(p+1)/15 | | 14+x=88 | | -5+x/4=-7 | | x(2x+5)=525 | | (7a-3)^(1/4)-3=0 | | 3/4x-7/10=-1/20x+2/3 | | x=10x10+10 |